
FUNDAMENTAL THEORY OF HEAT PIPES 
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Among the problems involved in the theory of heat  pipes is that of finding the maximum amount of 
heat  which can be t r a n s f e r r e d  along the pipe, the c losely  re la ted problem of finding the optimum design 
for  heat  pipes, and the problem of determining the the rmal  res is tance  of pipes.  Successful  and efficient  
applications of heat pipes depend on the solution of these problems.  It has genera l ly  been believed that the 
the rmal  res i s t ance  of heat  pipes is negligible, except in cases  in which the compress ib i l i ty  of the vapor  
comes into play, so that most  work on this theory has dealt  with only the f i r s t  two of these prob lems .  
Fu r the rmore ,  despite the large number  of papers  which have been published, the theory which has been 
worked out is genera l ly  approximate or  of a qual i ta t ive-est imate  nature,  and ve ry  r e s t r i c t i ve  assumptions 
have been used. The problem of designing heat pipes has thus been nei ther  worked out fu l lynor  formulated 
c lear ly .  It is sufficient to note that all published work on the design of heat pipes has been r e s t r i c t ed  to 
e i ther  long pipes or  to conditions on the outer  surface  of the pipe such that the heat flow through the pipe is 
constant in the evaporat ion and condensation zones.  

Recent exper iments  have shown that under ce r ta in  working conditions heat pipes can display a signi-  
f icant thermal  res i s tance  which cannot be at tr ibuted to vapor  compress ib i l i ty .  In par t icular ,  this is the 
implication of measuremen t s  of the vapor  t empera tu re  inside a sodium heat pipe [1]. 

To  der ive  a theory  giving the the rmal  res i s tance  of a pipe which holds for  shor t  pipes and which takes 
into account the hea t - t r an s f e r  conditions (which are  highly inhomogeneous in the longitudinal direction) on 
the outer  surface  of the pipe, we must  s t a r t  f rom a r igorous  formulat ion of the problem of designing heat 
pipes, taking into account all the basic hea t -  and m a s s - t r a n s f e r  p rocesses  in the pipe mate r ia l  and in the 
cavity s imultaneously;  i .e. ,  we must  formulate  the problem as a conjugate problem in the sense  of [2]. 

1. One of the initial considerat ions for  determining the limiting capabil i t ies of a heat pipe is the set  
of working conditions. Various vers ions  of these conditions are  given in [3, 4], but all a re  only qualita- 
t ive in nature,  as can be seen f rom the c i rcumstance  that these conditions, represent ing  a l imitation on the 
total p r e s s u r e  drop in the pipe, do not specify between which points on the in ter face  this p r e s s u r e  drop is 
to be de termined.  

A r igorous  working condition, f ree  of this shortcoming,  was found in [5]: 

. ' ~ " ~ ( ,Ov. ,V~2 -- 9 L U ~ I ) ]  --.< ( 1 )  max [(Pv1 --  PV.,) --  (.PLa--PLe) -:(,~v~v;q - PLUTq) --  Pk,,~, ~" 
D<.x,~l 
O~x~<l 

This condition specifies the points on the inner surface of a capillary structure between which the total 
p r e s s u r e  drop is to be de termined;  these points are  those at which the left  side of inequality (1) r eaches  
maxima as a function of the two var iables  xt and x~. 

The limiting capi l lary  p r e s s u r e  Pkmax in condition (1) iS governed p r imar i l y  by the capi l la ry  s t ruc -  

ture  and can be found eas i ly  for  each par t i cu la r  s t ruc tu re .  For  example,  it is not difficult to see that in 
the case of a capi l lary  s t ruc tu re  having cyl indr ical  pores  of radius a the p r e s su re  Pkmax would be given by 

2,~ ~ (2) 
..... COS 6 - - -  /9 kmax a /~ ' 
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while in the case of a capi l lary  s t ruc ture  having open channels of width 2a on the inner surface  of a heat 

pipe this p r e s s u r e  would be 

cos 8 ~ (3) Pk==x = T -  - - ~ -  

Condition (1) takes into account the react ion of the flows of evaporated and condensed mater ia l  to the 
phase - t rans i t ion  sur face .  This  effect turns out to be important  only at very  high phase- t rans i t ion  veloci -  
ties and when there is a pronounced convers ion of heat flows ac ross  the pipe shell in the evaporation and 
condensation zones.  The f i rs t  attempt to take this effect into account in an analysis  of the s ta r t -up  of a 
heat  pipe was made in [6]. 

2. A complicat ion which a r i ses  in the formulat ion of the problem of designing heat pipes is that 
changes in the working conditions can be accompanied by changes in the nature of the t r ans fe r  p rocesses  
occur r ing  in the pipe. For  example, the vapor  flow inside the pipe can be ei ther  laminar  or turbulent, de-  
pending on the heat load and the working temperature ,  and the vapor  i tself  can be ei ther  compress ib le  or 
incompress ib le .  T r a n s f e r  p r o c e s s e s  in the pipe shell can be complicated by boiling of the coolant in the 
pores  of the capi l lary  s t ruc ture  and the part ial  drying of this s t ructure .  It thus becomes neces sa ry  to de-  
te rmine  the conditions corresponding to each working regime of the heat pipe. A method was descr ibed in 
[5], for  example, for  determining the heat load and working tempera ture  for which each of these vapor flow 
reg imes  occurs .  

It should be noted that the s t ruc ture  of the conjugate problem of designing heat pipes is the same for 
different  operating reg imes .  The only differences are in the individual equations descr ibing those t r ans fe r  
p r o c e s s e s  which change in nature in the t ransi t ion to the new working regime.  We turn now to the fo rmula -  
tion of the conjugate problem of designing heat pipes for the case  of the laminar  flow of an incompress ible  
vapor  [5]. In this case  the motion of the vapor is descr ibed by 

Orv.,. _... Orv,. = O, (4) 
Ox Or 

_ (02v~ O"-v~ l Ov~ ) Ov.~ Or,: OPV ', 11V ~ --' ~ - ~ -  . . . .  (5) 
PVV~ ~ § 9vV" 0, Ox Ox"- Or +" ," Or ' 

__ ( 0 " %  Oh,,. l Ov,. v~ ) Or,. Or,. OPv ~]v + - - -  -:- - -  �9 , (6) 
PV~ ~ -'-PVV'" 0, Or Ox ~ Or"- r Or r"- 

OTV -:-gvC~vV,. OTv = k v J- '~ . . . .  �9 (7) 
'~ Ox Or , cqx 2 ' Or z ' r Or 

tf the thermal  conductivities of the coolant and the mate r ia l  of the capi l lary  s t ruc ture  are  approximately 
the same, as they are  in h igh- tempera tu re  heat pipes, the coolant tempera ture  must  be at approximately 
the same tempera ture  as the capi l lary  s t ructure ,  so that the energy t ranspor t  in a capi l lary  s t ruc tu re  
whose pores  are  completely  filled with condensate can be descr ibed by 

t" T L , h  L - -  Z.,: ' r )'~r = O. ( 8 )  ox ~ x  T ~,. ~Lrh:L-- -J-r, 
System (4)-(8) should be supplemented with the heat-conduct ion equation in the pipe shell and the equation 
descr ib ing the fi l tering of the coolant through the capi l lary  s t ruc ture .  As a rule, the pipe shell is much 
thinner than the capi l lary s t ruc ture ,  so that it is frequently possible to neglect the heat redis tr ibut ion along 
the pipe shell.  Then the heat-conduct ion equation for  the shell can be integrated easily, and we find, in 
par t icu lar ,  the following relat ion between the heat flows ac ros s  the outer and inner sur faces  of the pipe 
shell :  ql = q2R2/RI �9 The par t i cu la r  fo rm of the coolant-f i l ter ing equation depends on the type of capi l lary 
s t ruc ture  used in the pipe; this aspect  of the problem will be discussed a bit fur ther  on .  

A formulat ion of the conjugate problem also implies a formulat ion of the boundary conditions and the 
conjugate conditions for  this sys tem of equations. Let us consider  in par t icu lar  the case in which the con-  
ditions at the inner surface of the pipe reduce to a specification of the heat flow ac ross  this surface;  where 
necessa ry ,  the problem can easi ly be reformula ted  for other conditions. We fur ther  assume that there is 

! 

no heat t r ans fe r  ac ross  the ends of the pipe. Then a steady state is possible only if j q2(x)dx = 0. 
0 
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We introduce the d imens ion less  quantity a, defining it as a quantity which is numer ica l ly  equal to the 
su r f ace  a r e a  at which the phase t rans i t ion  occurs  divided by the unit sur face  a r e a  of the cap i l l a ry  s t r u c -  
t u r e ,  r = R. At those pa r t s  of the r -- R sur face  where evapora t ion  occurs ,  the quantity a is equal to the 
su r f ace  poros i ty  of the cap i l l a ry  s t ruc tu re ,  e c s .  Since vapo r  condenses  over  the ent i re  r = R sur face ,  we 
would have e -- 1 in the condensation zone. 

Using this definition we can wri te  the complete  se t  of boundary conditions and conjugate conditions 
for  E qs. (4)-(8) and for  the coolan t - f i l t e r ing  equation: 

 =lx=o = - -  = = = o ;  ( 9 )  

OTv '~=o c)Tv' = O; 8T I _ OT ~=t = O; (10) 
Ox = c)x .~=~ -~--x I /o  Ox 

~; a T  
- -  --~--r ~=n, = q@dR1: (II) 

�9 or  I 2 ~  / ~ [ Pv P-!To.)] - (1~=) 

T ' = T O 1 + for %.=R<O; (13) 
VL,==~ ' ,u 8eP(To) lO:-+fi(1--cr , a 

OTvI = 0  for T !,.=R > O; (14) 
Or l,-=i~ 

I ),;. aT ! ==~ aT v l  ,~ 
o--7-~,.: R v - ~ ; -  = fo~ �9 ],:R = o. (15) 

When the p rob lem is formula ted  in this manner ,  there  is no cha rac t e r i s t i c  t empe ra tu r e ,  so that the so lu-  
tion is de te rmined  within the value of the t e m p e r a t u r e  at some  point on the pipe.  

3. To numer ica l ly  solve this compl ica ted  nonl inear  p rob lem we must  use an i te ra t ive  p r o c e s s ;  the 
mos t  na tura l  p rocedure  would be to numer i ca l ly  s imula te  the es tab l i shment  of s t eady - s t a t e  operat ion of 
the pipe.  A n e c e s s a r y  but not a sufficient  condition for  the convergence of this i te ra t ive  p roce s s  is spat ia l  
s tabi l i ty  of the solution found in each step of the i terat ion.  Exper ience  in such calculat ions has  shown that 
it is e x t r e m e l y  difficult to sa t i s fy  this condition in the s imul taneous  solution of the en t i re  s y s t e m  of equa-  
tions descr ib ing  the p r o c e s s e s  in the heat  pipe. 

However,  spat ia l  s tabi l i ty  can be achieved if the i tera t ion is based on a succes s ive  solution of the 
p rob l ems  of the vapor  motion inside the pipe, of heat  t r a n s f e r  ac ros s  the pipe shell ,  and of coolant motion 
in the cap i l l a ry  s t ruc tu re .  Since all these p rob lems  a re  in ter re la ted ,  the solution of each must  be based 
-on all the quantities cor responding  to the other  p rob l ems  in the previous  s tep of the i tera t ion.  For  e x a m '  
ple, in solving the p rob lem of the vapor  motion inside the pipe, we mus t  take the su r face  t e m p e r a t u r e  T o 
and the heat  flow a c r o s s  this surface ,  q0, f r o m  the solution of the previous  s tep in the solution of the hea t -  
conduction p rob lem in the pipe shell .  The success ive  solution of these p rob lems ,  in addition to ensur ing 
spat ia l  s tabil i ty,  makes  a cons iderably  lower demand on the opera t ional  m e m o r y  of the compute r .  

Fo r  brevi ty ,  we omit  d iscuss ions  of the methods for  solving each  of these p rob lems ,  but we do not 
wish to d raw attention to previous  comment s  [5] on d i f ferences  in the methods for  solving the p rob lem of 
the l amina r  flow of the vapor  in the ca se s  of shor t  and long heat  p ipes .  In [5] there  is also a s y s t e m  of 
equations for  approximate  calculat ions of turbulent vapor  flow. 

The p rob lem of the heat  flow through the cap i l l a ry  s t ruc tu re  can be solved approx imate ly  by spec i fy -  
ing the rad ia l  dependence of the t e m p e r a t u r e  as some polynomial .  

In con t ras t  with the vapor  problem,  the coolant - f i l te r ing  p rob lem mus t  take into account the effect  of 
g rav i ty .  This  can be handled compara t ive ly  s imply:  Since the gravi ta t ional  force  is a potent ial  force ,  it is 
suff icient  to sub t rac t  the quantity PL g x s i n 7  f r o m  the liquid p r e s s u r e  obtained in a solution of the p ro b l em 
neglect ing gravi ty .  

An es t ima te  of R e r L  for  coolant f i l ter ing in a heat  pipe yields a value l ess  than one for  the case  of 
alkal i  me ta l s ,  so that we can neglect  convective t e r m s  in the equations of motion and use  the Stokes ap-  
p rox ima t ion  in calculat ing the liquid flow through the cap i l l a ry  s t ruc tu re .  It can be shown that in this ap-  
p rox imat ion  the liquid p r e s s u r e  along the cap i l l a ry  s t ruc tu re  can be wri t ten 
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Fig. 1. Cell  of the s e rge  network.  

PL (x) : PL (0) - -  vL- d dx L Ir=R dx, (16) 

0 0 

where  K (the permeabi l i ty )  and d a re  p r o p e r t i e s  of the cap i l l a ry  
s t ruc tu r e .  If the cap i l l a ry  s t ruc tu re  is a coaxial  gap fo rmed  by 
a s m a l l - p o r e  s c r e e n  and the shel l  of the heat  pipe, these p rop -  
e r t i e s  a r e  

R~ [ i  '--&- 1- -o;  ~ ] t?, . 2R 
K = -~-  4 4-~ng ; (Z - -  R1 ; d R2 - -  R2 ( 1 7 )  

The s a m e  express ion  can be used for  d if the cap i l l a ry  s t r u c -  
ture  is of an i r r e g u l a r  nature  (consist ing of s e v e r a l  l aye r s  of a 
me ta l  grid,  a baked powder,  e tc . ) .  

4. The cap i l l a ry  p r e s s u r e  due to the m e n i s c u s e s  fo rmed  in the cap i l l a ry  s t r u c t u r e  pores  depends on 
the pore  radius  at the posi t ion of a given men i scus .  If the cap i l l a ry  s t r u c t u r e  is such that there  a re  po res  
of va r ious  d i a m e t e r s ,  it could be that the cap i l l a ry  p r e s s u r e  due to the m e n i s c u s e s  in la rge  pores  would 
not be suff icient  to t r a n s p o r t  the coolant,  while the coolant could st i l l  move along the sma l l  po re s .  In this 
case  the la rge  po res  would d ry  up e i ther  comple te ly  or  par t ia l ly ,  if the condensate  does not fill the ent i re  
pore  c r o s s  sect ion.  The drying would not occur  ove r  the ent i re  length of the capi l la ry ,  but only beginning 
at the point at which the d i f ference  between the vapo r  and liquid p r e s s u r e s  becomes  equal to the l imit ing 
su r face  p r e s s u r e  of the men i scus  at the given point. Accordingly,  when the working conditions of the heat  
p ipes  a r e  such that drying occu r s  in the cap i l l a ry  s t ruc tu re ,  the deg ree  to which the cap i l l a ry  s t r u c t u r e  is 
filled with coolant va r i e s  along the pipe, being comple te  in the condensat ion zone but only par t ia l  at some  
point at the beginning of the evapora t ion  zone. 

The r e s i s t a n c e  to the coolant motion, m e a s u r e d  by the permeabi l i ty ,  depends on this degree  of filling, 
so  that the f i l ter ing in this case  occurs  with a pe rmeab i l i t y  which va r i e s  along the pipe, and this p e r m e -  
abi l i ty in turn becomes  a function of the f i l ter ing p r o c e s s .  

When the cap i l l a ry  s t r u c t u r e  is pa r t i a l ly  dry,  the condensate  evapora t e s  in i ts  in ter ior ,  and the r e -  
sul t ing vapor  moves  along the la rge  po re s  to the su r face  of the cap i l l a ry  s t ruc ture ,  en ter ing  the cavi ty  of 
the pipe.  As the vapor  moves  along the la rge  pores ,  the cap i l l a ry  s t r u c t u r e  is heated  as a r e su l t  of heat  
t r a n s f e r .  To incorpora te  these p r o c e s s e s  in our formula t ion  of the p rob lem we mus t  adopt some model  
fo r  the cap i l l a ry  s t ruc tu re  and for  the f i l ter ing of the condensate  through it under  conditions of par t i a l  d r y -  
ing. 

The assumpt ions  which we adopt r egard ing  the f i l ter ing of the vapor  and the condensate  a re  that the 
vapo r  moves  only a c r o s s  the cap i l l a ry  s t ruc tu re  in the r direct ion,  while the iiquid moves  along the capi l -  
l a ry  s t ruc tu re ,  in the x d i rec t ion.  Then we would have 

VV , := "C L == 0; -t" x ~ "t'Lx; "C r :- T:V,.; 

, OT 
q.~: == aLxh L - - k x  - -  

Ox 

and the continuity and ene rgy  equations would become 

OrTL,.v 
Ox 

q,. = rv,.hv_:_ g or y_, 
01" 

Orw '" O, 
Or 

(18) 

(19) L-,...,. )]=o. _ _  'TV.~!; . .  OT I 0 ' �9 OT 

O x .  &v i ~ -  Or , 

As before,  the t he rm a l  conductivity coeff ic ients  of the coolant  and the cap i l l a ry  m a t e r i a l  a re  a s sumed  to be 
app rox ima te ly  equal and quite high, so  that a single t e m p e r a t u r e  can be used for  both m a t e r i a l s .  Taking 
into account the physica l  meaning of each of the t e r m s  in Eq. (19), we can r ewr i t e  this equation as 

o ' 1 - -  1 oT ) ahv (20) 
�9 L..~ o~ ~,-( s ox / (hv - hL) T - "  o,- -~--,<- o~-, - j ~  -~v,, a--U-' 

where  the enthalpy of the v a p o r  resul t ing  f r o m  the evaporat ion,  h ~ a P  is evaluated at  the t e m p e r a t u r e  

T a''~ a [ Pv P.(T) ] (21) 
T~,Vap= V +  4P (T--------( (2 - -  a)[a +'8 (t - -  ~)] V Z v V T 
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�9 r . t o ~ ' : . -  - - :  

2 

5.$7 ~ / ,  

s.,o "=J-- J i 

o , s  .t,o r,5 z o,5 ,to 1 , s  ~. 
Fig. 2 : Fig. 3 

Fig. 2. Limiting heat load (watts per  square meter)  as a func- 
t ion of the length o f  the pipe (meters)  for  a Na coolant and R~ 
= 1 e r a .  1) 1175~ T =0 ;  2) 1075~ q~=0;3)  973~ T = 0 ; 4 )  
973~ T = 7r/2; 5) 973~ T = 0. 

Fig.  3. Optimum radius of the per fora ted  sc reen  as a func- 
t ion of the pipe length (see Fig. 2 for  the meaning of the curve  
labels).  

The variat ion in the vapor  flow along the r direct ion,  ref lected in Eq.  (20) by the express ion  ~ r r n r / 3 r  , is 
re la ted  to the evaporat ion within the capi l la ry  s t ruc tu re .  If we denote by el the total  f r ee  sur face  a r ea  of 
the Liquid in a unit volume of the capi l la ry  s t ruc ture ,  then by using Eq.  (12) for  the evaporat ion ra te  we can 
write 

a r w , =  ~ l, -~ I Pv P(T) ] 
2:nR* _ i T V i T--'] r~l' (Z2) 

We take the heat t r an s f e r  between the vapor  and the capi l lary  s t ruc ture  into account by means of the ap- 
p ropr ia te  he a t - t r an s f e r  coefficient .  Then introducing the porosi ty of the dry  pores ,  edrrY, for  a c ros s  
sect ion of the capi l lary  s t ruc tu re  normal  to the r direction,  we find 

8h v 2~,vNu 
r v ,. .... (T --  7 v) ~,~,ry. (~.3) 

,-1 

&" a'-' 

Equations (20)-(23) descr ibe  the heat flow through the part ia l ly  d ry  par ts  of the capi l lary  s t ruc tu re .  
Where this s t ruc tu re  is completely filled with coolant, the heat flow is descr ibed  by Eq.  (8). 

To  determine  the liquid p r e s s u r e  P L  and the quantities e i and e~r ry  which appear  in (22) and (23), we 
turn  to the example of the capi l lary  s t ruc tu re  used by Ivanovskii et al., [1], consisting of severa l  laydrs  
of a serge  network.  During drying, the liquid moves in this mater ia l  along channels of wedge-shaped 
c ro s s  sect ion formed by the wire  of the base and the wires  of the weft, which a re  p res sed  t ightly against 
the base [1 ]; i .e. ,  in a capi l lary  s t ruc tu re  of this type the number  of channels through which the liquid 
moves  remains  constant as drying occurs ,  and only the c ross  sect ion filled by coolant var ies .  In the case 
of par t ia l  drying this capi l lary  s t ruc tu re  is thus equivalent to a se r i e s  of capi l lar ies  a r ranged along the 
pipe. It can be shown that the permeabi l i ty  of a s e r i e s  of capi l lar ies  is re la ted to the average c r o s s - s e c -  
tional a r ea  of the liquid-fiUed capi l lar ies ,  s, and to the density of these capi l lar ies ,  n, by 

where f is a coefficient  ~overned by the geomet ry  of the capil lary:  the way it twists and its c ro s s - s ec t i ona l  
shape. 

F r o m  Fig.  1, we find the approximate equation s = 2 r 2 / R i n i ? r e f o r t h e  c ross - sec t iona l  a r ea  of the 
wedge-shaped channel;  then the permeabi l i ty  of the capi l lary  s t ruc tu re  is 

(24) 
[ Kcs. Xd~y ~< x .< 1,  
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1,4 ' ~ P v  

- 
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 g.e . ,  
I'~ o,~ o~ r x/  t 

Fig. 4. Prof i les  of the vapor  p r e s su re  (newtons per  
square  meter)  and the liquid p re s su re  along the pipe, 
fo r  the case  of a Na coolant, R t = 1 cm, and 973~ 
Upper pair  of curves) l = 1 cm;  T = 0; middle) l 
= 0.5 m, T = rr/2; lower) l = 1 m, T = v / 2 .  

where Kcs is the permeabi l i ty  of a capi l lary  s t ruc ture  completely filled with liquid, 
at which drying begins, found f rom 

2~ cos 6 
( P v -  PL ) . . . .  d~y - 

and x is the point 

( 2 5 )  

The channel half-width r k is governed by the p res su re  difference across  the free surface of the liquid: 

o cos 6 
r k - -  (26) 

PV---PL 

We note that Eqs. (25) and (26) neglect the (usually inconsequential) reaction at the phase transitions [see 
(11)]. Then the coolant filtering is described by the Darcy equation 

dPL v L 
- -  TL.~, (27 )  

dx K 

where the permeabi l i ty  of the capi l lary  s t ruc ture  is given by (24) and (26). To use (24)-(27) to determine 
the liquid p re s su re  along the pipe we must  know the value of this p r e s s u r e  at some point in the capi l lary  
s t ruc tu re .  During drying, an excess  of coolant appears  and is displaced toward the condensation zone by 
the vapor  flow. Accordingly,  at the point of minimum curvature  of the free surface of the liquid Xmin, 
this surface  coincides with the surface  of the pipe cavity, so that we have 

where Xmi n is found f rom 

and where dPkk/dx is given by (27). 
=Z. 

(28) 

d 
dx [Pv--  PL]x,n~n = 0, (29) 

If Eq. (29) has no root in the condensation zone, we would have X m i  n 

On the basis of the discuss ion above regarding the coolant f i l tering and on the basis of the s t ruc ture  
of a capi l lary  s t ruc ture  made f rom a serge  network, we can set ~ -- 2rkn , and set  e dry equal to the 
poros i ty  of the capi l lary  s t ruc ture  Scs r. We can also expect the thermal  conductivity coefficients X~ and 
},~ to be given approximately by 

)~- =: Zsolid( ] --~csx); ~.~ = Xsolid(l --acs,}. 

5. To explain the vapor - t empera tu re  drops observed along the  pipe in [1], the calculation procedure  
was completed and converted into a computer  p rogram.  To facili tate a compar ison  with the data of [1], the 
calculat ions were ca r r i ed  out for the case of a long heat pipe with a sodium coolant, working under condi- 
tions of turbulent vapor  flow. It was not possible to determine whether there was part ia l  drying of the 
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cap i l l a ry  s t ruc tu re  f r o m  the data given in [1 ], so calculat ions were  c a r r i e d  out for  the cases  with and with- 
out drying.  The r e su l t s  show that the s ignif icant  changes observed in the vapor  t e m p e r a t u r e  along the 
evapora t ion  zone were  due to a pa r t i a l  drying of the cap i l l a ry  s t ruc tu re .  

Using condition (1), we also c a r r i e d  out calculat ions designed to find the opt imum geome t r i c  p a r a m -  
e t e r s  of heat  pipes and to de te rmine  the i r  l imit ing capabi l i t ies .  

The left side of inequality (1) (which we denote by APmax) depends on the geomet r i c  p a r a m e t e r s  of 
the heat  pipes {/, l~, 12, R, R1); the heat  flow along the pipe, Q; the working t empe ra tu r e ;  and the p r o p e r -  
t ies  of the cap i l l a ry  s t ruc tu re  and the coolant.  As Q inc reases ,  APma  x i nc rea se s  monotonically,  so that 
the heat  load for  which (1) is an equali ty is the l imiting heat  load for  the given pipe.  Obviously, for  a given 
value of R l and for  o therwise  equal conditions, there  is an opt imum radius  R of the pipe cavity,  at which 
the cap i l l a ry  s t ruc tu re  mus t  ove rcome  the min imum p r e s s u r e  drop.  Equating this p r e s s u r e  drop to the 
l imit ing cap i l l a ry  p r e s s u r e  Pkmax,  we find the following re la t ion  for  the m a x i m u m  heat  flow Qmax which 
can be mainta ined along the pipe: 

min lAP ....  (Qmax)'] -- Pkm~:" 
0<R<R, 

It should be noted that condition (30) is a restriction on the value of Q which is set by the capabilities of 
the capillary structure; the actual value of Qmax may turn out to be considerably lower, because of the 
limitation on the heat flux density through the pipe shell in the evaporation zone imposed by boiling of the 
coolant and the consequent disruption of operation. 

We turn now to some results calculated in an effort to use Eq. (30) to optimize the operation of 
sodium heat  pipes having a cap i l l a ry  s t ruc tu re  consis t ing of a coaxial  gap fo rmed  by the pipe shel l  and a 
pe r fo r a t ed  sc reen .  P r e l i m i n a r y  e s t ima te s  showed that in all  cases  cons idered  the reac t ion  at the phase  
t rans i t ions ,  re f lec ted  by the las t  two exp res s ions  in pa ren theses  in A P m a  x is v e r y  insignificant,  so these 
expres s ions  were neglected in the subsequent  calculat ions.  

Calculat ions were  c a r r i e d  out for  a radius  of 0.1 m m  for  the s c r e e n  ape r tu r e s ,  a s c r e e n  poros i ty  of 
0.5, and condensation and accommodat ion  coeff icients  of ~ = 0.1 and fl = 0.1. F igure  2 (curves 1, 2, and 3) 
show, for  three  t e m p e r a t u r e s ,  the l imiting heat  flux densi ty along the pipe as a function of the length of the 
pipe for  propor t ionate  changes in each zone ( l l / l  = 0.36; 1 2 / l  = 0.5; R 1 = 1 cm).  The value of Qmax for  a 
ve r t i ca l  pipe (curve 4) is just  a bit  higher  than for  the hor izonta l  case .  Fo r  values  of l sl ightly l a r g e r  than 
1 m, the coolant cannot be held in the gap at all  at T = 973~ because  of gravi ty ,  and the gap d r i e s  up. In 
this case  the coolant does not r e tu rn  to the evapora t ion  zone by means  of the cap i l l a ry  s t ruc tu re ;  instead, 
as in pipes without cap i l l a ry  s t ruc tu re s ,  it r e tu rns  through the dra inage of a f i lm of condensate  along the 
inner su r face  of the pipe.  It should be noted that if  there  were  no di f ference  between the vapor  p r e s s u r e s  
in the evapora t ion  and condensat ion zones opposing the force  of g rav i ty  the coaxial  gap would d ry  up even 
at l = 0.5 m.  The heat  pipe cons idered  he re ,  having a s c r e e n - a p e r t u r e  radius  a = 0.1 m m  and a length of 
no m o r e  than 0.5 m,  cannot work  against  g rav i ty .  Also shown in this f igure  (curve 5) is the dependence 
of Qmax on l for  changes in the length of only the adiabatic zone (the lengths of the evapora t ion  and con-  
densat ion zones r em a i n  constant) .  In this case  Qmax falls off much m o r e  rapidly  with increas ing  l than in 
the case  of propor t ionate  changes in each of the zones .  

F igure  3 shows the opt imum radius of the pe r fo ra t ed  sc reen ,  at which the m a x i m u m  heat  flows Qmax 
shown in Fig. 2 can be mainta ined along the pipe.  We see  that Rop t depends on the length of the pipe, the 
working t empera tu re ,  the or ientat ion of the p ipe  with r e spec t  to the force  of gravi ty ,  and the ra t ios  among 
the lengths of the var ia t ions  zones.  

F igure  4 shows the prof i les  of the vapor  and liquid p r e s s u r e s  along the heat  pipe; according to these 
calculat ions,  the meniscus  curva tu re  is min imal  at the beginning of the condensat ion zone, x = 1 2 / l ,  i n  all 
three  cases .  The m a x i m u m  meniscus  curva ture ,  on the other  hand, is in the beginning of the evapora t ion  
zone, x m = 0, in a hor izonta l  pipe, while it is d isplaced to x m = 0.0833 for  a ve r t i c a l  pipe 0..5 m long and 
to the end of the condensat ion zone, Xm = 1 for  a ve r t i ca l  pipe 1 m long. These  resu l t s  point out the e r r o r s  
in intuitive a rguments  about the posi t ions of m in imum and m a x i m u m  meniscus  cu rva tu re  [3, 4] and r e -  
emphas ize  the need to use  the hea t -p ipe  working conditions in the f o r m  in (1) in calcula t ions .  

N O T A T I O N  

x, r a r e  the axes  of the cyl indr ica l  coordinate  sy s t em;  
P is the p r e s s u r e ;  
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is the densi ty;  
is the edge wetting angle; 
is the su r face  tension coeff icient ;  
a r e  the vapo r  and liquid ve loc i t i es ;  
is the cavi ty  radius ;  
a r e  the inner  and outer  radi i  of the pipe;  
a r e  the dynamic and k inemat ic  v i scos i t i e s ;  
is the t h e r m a l  conductivity;  
is the specif ic  heat  at constant  p r e s s u r e ;  
is the m a s s  flux densi ty;  
is the enthalpy; 
is the t h e r m a l  conductivi ty of coolant- f i l led  cap i l l a ry  s t ruc tu re ;  
a r e  the condensat ion and accommodat ion  coeff ic ients ;  
is the sa tu ra t ion  vapor  p r e s s u r e  at t e m p e r a t u r e  T;  
is the t e m p e r a t u r e  at the r = R su r face ;  
is the latent  heat  of vapor iza t ion ;  
is the acce le ra t ion  due to g rav i ty ;  
is the angle between the pipe and the hor izontal ;  
is the ene rgy  flux; 
is the pipe length; 
a re  the coordinates  of the beginning and end of the adiabat ic  zone.  
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